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Schrodinger equation in momentum space 
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Received 30 October 1978 

Abstract. A differential equation in momentum space is derived for the case of an attractive 
Coulomb potential. The bound-state energies and the momentum eigenfunctions are 
shown to arise from this differential equation in a simple fashion. The zero-energy 
partial-wave momentum eigenfunctions are also derived. The s-wave bound states and 
their momentum eigenfunctions in a three-dimensional linear potential and an attractive 
l / ( r+@)  potential are derived by similar techniques. The connection between the quan- 
tisation formulae in these potentials and the classical action integral in momentum space is 
explored. 

1. Introduction 

In classical mechanics momenta and spatial coordinates are treated on an equal footing 
in Hamilton’s formulation. In quantum mechanics the coordinates and momenta 
become operators, and the particular form of these operators depends on the choice of 
representation. Thus the Hamiltonian for a system can be represented in either one of 
the two equivalent representations: coordinate or momentum. This equivalence is 
usually illustrated with the example of the one-dimensional harmonic oscillator. The 
one-dimensional linear potential is another example where the momentum eigen- 
functions are particularly simple. But when studying realistic potentials, the coordinate 
representation is inevitably preferred. Dirac (1 958) has argued that the transformation 
from classical to quantum mechanics should be made by first constructing the classical 
Hamiltonian in a Cartesian coordinate system and then replacing the coordinates and 
momenta by their operator equivalents, which are determined by the particular 
representation that is chosen. The important point, however, is that the transformation 
should be performed in a Cartesian coordinate system, for it is only in this system that 
the uncertainty principle between the coordinates and momenta is usually enunciated. 
Dirac’s prescription leads to the proper quantum Hamiltonian in situations that have 
been encountered without any ambiguity. Most potentials encountered in physics are 
central potentials and hence the spherical polar coordinate system lends itself as a 
natural coordinate system for studying the problem. When the potentials are momen- 
tum-independent, if the coordinate representation is chosen, only the kinetic energy 
part of the Hamiltonian contains the momentum operators. Hence the transformation 
of the kinetic energy term in the classical Hamiltonian to the quantum mechanical 
operator form can be effected using Dirac’s prescription, which leads to a simple form 
for the kinetic energy operator in the coordinate representation. If, on the other hand, 
the momentum representation is chosen to study a central potential, l / r  for example, 
the momentum representation of this potential, according to Dirac’s rule, would 
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become 

which is a complicated operator because of the presence of the square root in the 
denominator. In  other words, the representation of the Hamiltonian itself in the 
momentum representation can be very complicated. This is one good reason for 
preferring the coordinate representation. 

The Schrodinger-type equation for the momentum eigenfunction can be deduced. 
This equation in momentum space is an integral equation as opposed to the usual 
differential equation in coordinate space. The reason for studying momentum eigen- 
functions is that many physical processes are governed by simple functions of the 
momentum transfer, and these functional forms are expected to be rational polynomials 
in the momentum transfer. Momentum eigenfunctions are usually obtained by solving 
the Schrodinger equation in coordinate space and then Fourier-transforming the 
coordinate space eigenfunctions. This can be a lengthy process as in the case of 
Coulomb eigenfunctions in momentum space (Morse and Feshbach 1953). Therefore it 
is worthwhile to attempt to obtain the momentum eigenfunctions directly. Solutions of 
the integral equation of the Coulomb problem for bound states are known in the 
literature on the subject (Bethe and Salpeter 1957). The bound-state momentum space 
Coulomb eigenfunctions obtained by this procedure and group-theoretical methods 
(Bechler 1977, Cizek and Paldus 1978, Bayen et a1 1978) are Geggenbauer poly- 
nomials in a variable which is a simple function of momentum and energy. Since the 
Geggenbauer polynomials satisfy a second-order differential equation, it must be 
possible to derive a differential equation in momentum space directly, at least for the 
Coulomb potential. 

The aim of the present paper is to derive a differential equation in momentum space 
for the Coulomb potential. In 9 2 we derive this equation. Definition of new variables 
and new functions leads to an extremely simple differential equation. Imposition of 
simple boundary conditions leads to a trivial quantisation formula. The Coulomb 
bound states are shown to arise from this equation in a simple fashion. The zero-energy 
momentum eigenfunctions are also derived. The mathematical procedure developed 
for the Coulomb potential is then used to derive conditions for bound states in a 
three-dimensional linear potential and a shifted Coulomb potential in 99 3 and 4 
respectively. In 9 5 we study the connection between the new variables used in our 
description and the action function in momentum space. Section 6 contains a discussion 
of further implications of this approach. Atomic units will be used throughout. 

2. Attractive Coulomb potential 

2.1. Bound states 

Let us first consider the s-wave Schrodinger equation 

(-d2/dr2-2b/r+cu2)r4 =0, (1) 

where -a2/2 is the binding energy and b is the Coulomb strength. The momentum 
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eigenfunction is defined by 

x = I tl,$dpr)r2 dr, 

where do is the spherical Bessel function. Henceforth we adopt the notation 

rtl, = R, PX =f. (3) 

Equation (1) can be written as 

(-d2/dr2+aZ)R = (2b/r)R. (4) 

Now we define two different transforms of R. Multiplying both sides of equation (4) by 
sin(pr) and integrating over r yields, after imposing the boundary conditions for a 
bound state R, namely R + 0 as r + 0, CO, 

where f' is the usual Fourier transform defined by 
m 

f' = I R sin(pr) dr. 
0 

We also define a cosine transform as 

f- = R cos(pr) dr. lo@= 
Premultiplying equation (4) by cos(pr)' and integrating over r yields 

( P 2  + a')f- +x dR I = 2b lom 5 cos(pr) dr. 
r = O  

(7) 

The additional term on the left-hand side of this equation arises because the cosine 
function does not vanish at the origin; but this surface term is independent of p .  From 
equations ( 5 )  and (8) we can deduce that 

(d/dp)(p2+ a2) f+  = 2bf- (9) 

and 

(d/dp)(p2 + az)f-= -2bf'. 

Elimination off- yields: 

Thus the s-state momentum eigenfunctions satisfy 

To solve this equation in momentum space we define 

g = ( p 2 + a 2 ) f ' = ( p 2 + a 2 ) p x  (13) 

and an operator 

[ ( p 2 + a 2 ) / 2 b ]  d/dp Ed/&. (14) 



1718 C V Sukumar 

In defining equation (14) we have assumed that such a linear operator in a new 
variable z can be found. This would be valid provided that 

dpldz = (p2+cy2)/2b. (15) 

Integration of equation (15) provides 

z = (2b/a)  tan-'(p/a), p = tan(az/2b). 

Thus the s-wave equation in momentum space becomes 

d2g/dz2 = -g. 

We have succeeded in reducing the differential equation in momentum space to a 
plane-wave equation in a new variable z .  The two linearly independent solutions of this 
equation are sin z and cos z. If we impose the boundary condition that g + 0 as p + 0, 
we obtain 

(18) g =sin z =sin[(2b/cy) tan-'(p/a)] 

and 

Lim g = sin(b.rr/cy). 
D+m 

If we. now require g to satisfy the boundary conditions that g + 0 as p + 00, for g to 
describe a bound state, we obtain the quantisation condition 

b r / a  = nrr, (20) 

where n is an integer, i.e. 

cy = b/n. 

The binding energy is then given by 

E = - i a 2 = - b  /2n . 2 2  

The wavefunction is given by 

Thus the requirement that g + 0 as p + 0, CO uniquely determines the binding energy 
and the eigenfunctions. The wavefunction can be normalised using the condition 

The fully normalised eigenfunctions are 

These functions are simply related to the solution in terms of Geggenbaiier poly- 
nomials, usually obtained by Fourier-transforming the coordinate space eigenfunctions 
(Morse and Feshbach 1953). 

This successful reduction of the s-wave differential equation in momentum space 
leads us to consider the operator on the left-hand side of equation (12) to enable the 
derivation of a differential equation in momentum space for the higher partial waves. 
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The Schrodinger equation for the radial eigenfunction $1 is 

$1 - - T r + T + a  $t=2b-. '1 r 
1 d2 1(1+1) 

( r d r  r 

The usual Fourier transform by spherical Bessel function yields 

( p 2 + a 2 ) x f  = 2b I ($dr).A(pr)r2 dr. 

where 

X I  = J cl/df(pr)r2 dr. 

It is shown in appendix 1 that for bound states satisfies 

Defining as before 

gf = P ( P 2  + a2)x1 (30) 

and the variable z by equations (14)-(16), equation (29) can be reduced to the form 

d2gr a2E(E + 1) 
dz2 b2 sin2(az/b) gf = -gf. -- 

The technique for solving this equation is similar to that for solving the equation 
satisfied by spherical Bessel functions (Landau and Lifshitz 1965). The solutions for 
successive I values are related by 

d a1 
g1 = cot y ) g f +  

This can be proved by induction (see appendix 2). Equation (32) can also be written in 
the form 

The condition for a bound state of angular momentum 1, that gf + 0 asp + CO, requires, in 
view of equation (32), 

(34) 

(35) 

i.e. 
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By recursion, the condition for a bound state of angular momentum I is 

Lim go = 0. (36) 
p-tm 

Thus the allowed energy levels are as defined before by equation (21), which determines 
the bound states for I = 0. Equation (33) can also be written by recursion as 

gl = (sin :)'(A- 
dz sin(mz/b) 

Using equations (18) and (21), we obtain 

with 

z = 2n tan-'(pnlb). 

gl can also be recast as 

(37) 

(39) 

Since 

Z 
2"-5 . . . , (41) 

sin z 2n-1 COS"-l - z (n-2)! 2"-3 COSn-3-+ z (n-3)! -- 
sin(z/n) - n (n-3) !1 !  n (n-5)!2! n 

(42) 
2 ( n - 2 ) !  2 

n (n-4)!1! n 
= - 1)2"-'  COS^-^--+. . . . 

Each successive differentiation in equation (38) reduces the leading power of cos(z/n) 
by unity. Since n - 1 is the leading power of cos(z/n) in equation (41), the maximum 
number of possible differentiations (as in equation (38)) that would produce a non- 
vanishing wavefunction is n - 1, i.e. the maximum value of 1 for a given n is n - 1 : 

I,,, = n - 1. (43) 

The similarity of equation (40) to Rayleigh's formula (Abramowitz and Stegun 1965) 
for spherical Bessel functions, 

is striking. 

2.2. Zero-energy solutions 

The zero-energy momentum space solutions satisfy equation (29) with a = 0: 

~ ~ / ~ ~ ~ ~ / ~ ~ ~ ~ 2 ~ ~ / ~ ~ ~ ~ ~ z ~ ~  + / ( 1 +  ~ ) P ' X I  = -4b2x/. 

We now define as before 

g1= P2fl  = PP2XI 
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and 

(p2/2b)(d/dp) =d/dz. 

Equation (47) can be solved to give 

dp/dz = p2/2b, z = -2b/p. 

Using equations (46)-(48) in equation (4% we obtain 

d2gl/dz2=f(f+1)/z2+gl=0. 

(47) 

(48) 

(49) 

This is the equation satisfied by Ricatti-Bessel functions; therefore 

gi (2) = ZWI  (2) = ( - ) I + *  (2b/p)91 (2blp 1. (50) 

Therefore 

XI =9i(2blp)/p4. (51) 

Thus the zero-energy momentum space eigenfunctions have a simple representation. 
Chen (1978) has arrived at the same answer by group-theoretical considerations. 

3. Linear potential 

The s-wave radial Schrodinger equation in a three-dimensional linear potential of 
strength b is 

(p2-k2)+=-2br+, ( 5 2 )  

where 1/2k2 is the energy. As in the Coulomb case we define the sine and cosine 
transforms f' and f- respectively. In terms of the radial solution 

r+ = R (53) 

we obtain, after premultiplying the Schrodinger equation by sin( pr) and cos( pr) and 
integrating over r, a pair of equations 

m 

(p2-k2)f+=-2b[  rR sin(pr)dr, 
0 

m (p2-k2)f-+-l dR =-2b[ rR cos(pr)dr 
dr  r=O 0 

If we let 

dR/drl,,, =A,  

we can deduce that 

(54) 

( 5 5 )  

When the inhomogeneous term A is absent, the linearly independent solutions of this 
pair of equations are sin[(p3/3 -k2p)/2b] and cos [ ( p 3 / 3  - k2p)/2b]. When the 
inhomogeneous term is present, the solutions f' and f- can be written with the 
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requirement that f’ vanishes at the origin as 

- A  cos z cos z (  p ’ )  dp’, (59 )  JOP 
f- = -COS z( B - A lop dp’ sin z ( p ’ ) )  - A sin z (60)  

where B is a constant and 

z = ( p 3 / 3  - k 2 p ) / 2 b .  

For a bound state we require, as in the Coulomb case, that ( p 2 -  k’)f’ vanish as P -+ 00. 

This yields the conditions 

B “  A= lo dp‘sin z ( p ’ )  

and 
r W  

J cos z (p’) dp‘ = 0. 
0 

(63)  

The second condition provides the bound-state energies. The same solution has been 
derived from coordinate space considerations (Antippa and Phares 1978). Thus f’ can 
be written as 

1 3 1 “  , 3  

f+= A( sin[ (5- k 2 p ) z ]  Jp sin[ (5- k ’ p ’ ) ~ ]  dp‘ 

- COS[ ($ - k’p) $1 lo cos[ ( y  - k’p’) $1 dp’] 
3 30 

The quantisation condition (63)  which we have derived is an exact quantum mechanical 
quantisation condition. Thus equations (64)  and (65)  provide the s-wave solution in 
momentum space directly. It is worth noting that the variable z was obtained from the 
condition that 

dz/dp = ( p 2 - k 2 ) / 2 b ,  

i.e. 
z=zl0 l P  ( p ’ - k ’ ) d p .  

4. Shifted Coulomb potential: u(r)  = -b/(r +@) 

We now consider the s-wave bound-state solutions in this attractive potential with 
positive p : 

( p 2 + a 2 ) J I = 2 6 J I / ( r + P ) .  (68)  

Defining f’ and f- as before, we arrive at the equations 
oc sin( p r )  

( p 2 + a 2 ) f ’ = 2 b / 0  R r + p  d r, 
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cos(pr) 
( p 2 + a 2 ) f - + A = 2 b  I, R -  r + @  dr, 

where A is as before the derivative of the radial solution at the origin. Thus 

- ( p 2  d + a 2 ) f +  

dp 
CO r 

= 2b Jo R- cos(pr) dr 
r + P  

m 

= 2b( lo R cos(pr) dr - @  

= [2b - @ ( p 2  + ff2)1f--PA. 

Similarly, 

-( d p 2  + ff 2 ) f -  

dp 
m r 

r + @  
= -2b lo R- sin( pr) dr  

= -[2b - @ ( p 2  + a2)]fc, (72)  

where we have used equations (69)  and (70)  and the definitions of f’ and f-. 
If the inhomogeneous term in equation (71) were absent, we would have 

and 

Now we define the operator 

d p 2 + ( u 2  d 
dz 2 b - @ ( p 2 + f f 2 )  dp’ -= 

which would imply that 

2 b - @ ( p 2 + a 2 ’  
z = J  p 2 + f f 2  ’ dp = 2b tan-’( E )  - @p. 

CY ff 
(77)  

In terms of z the solutions ( p 2  + a2)f of equation (75)  are sin z and cos z .  We can 
now solve equations (71)  and (72)  in terms of these solutions. Requiring that f’ vanish 
as p i, 0 provides 
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g- = ( p ’  +a’)f- =cos z 

The requirement that g’ vanish as p +CO, for a bound state, yields the conditions 
m 

B =PA 5 sin z’ dp’, 

cos z’ dp’= 0. 

0 

6 

(79)  

The second condition can be written in terms of Whittaker functions (Gradshteyn 
and Ryzik 1965) as 

The zeros of the Whittaker function provide the true bound states in the potential, in 
agreement with Mehta and Patil (1978).  The momentum eigenfunctions can be 
obtained from 

g’ = PA( sin z 
00 

sin z‘ dp’ -cos z lop cos z’ dp’] . (83) 

Thus once again we have been able to show that the bound states are related to an exact 
quantisation condition (equation (82) ) .  The inhomogeneous terms in the shift Coulomb 
potential case and the linear potential case are similar. Therefore, in terms of the z 
variables for the two cases, the solutions and quantisation conditions are similar. 

From equations (77) ,  (78)  and (83 )  we can write the zero-energy s-wave solution in 
the -b / ( r  + p )  potential as 

(84) 
In the next section we explore the significance of the variables z which we introduced in 
each of the three potentials we have considered. 

5. Canonical transformations in classical mechanics and action integrals 

In classical mechanics, the Hamiltonian is the total energy of the system. For zero 
angular momentum, 

H = $ p 2 +  u ( r )  = E  = rk 1 2  , 

i.e. 
( p ’ - k 2 ) =  -2v(r ) .  

If we now introduce a scaling Q on all radial coordinates such that 

r --* r / Q ,  (87)  
then equation (85) can be solved formally to provide r as a function of Q and p ,  if we 
treat Q as a function for the present purpose. Thus r can be expressed as a function of 
the old momentum p and the new coordinate Q. 
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To find a new momentum P, conjugate to Q, we consider generating functions of the 
third kind F3 (Goldstein 1965), since F3 is a function of p and Q. In terms of F, the old 
coordinate r and the new momentum P are given by 

r = aF3/ap, 

P = -aF3/aQ. 

Under the scaling defined by (87), equation (86) becomes 

( p 2 - k 2 ) =  -2v(r/Q), (90) 

which can formally be inverted to give 

where f defines the inverted function. From equations (91) and (88) we obtain 

@'3/ap = -Qf((p2-k2)/2), (92) 

F3 = -Q J dpf((p2- k2)/2) +g(Q). (93) 

If we require the new momenta to be independent of the new coordinate, i.e. if we set 
g(Q) to be identically zero, then the new momentum is given by 

P= -aF3/aQ = dpf((p2-k2)/2). (94) 

If the new coordinate Q is a constant chosen to be 1 arbitrarily, then 

P =  rdp, I (95) 

which is just the action integral in momentum space. The transformation we have 
referred to above is a point-momentum transformation. Thus the action integral in 
momentum space is canonically conjugate to a constant function that scales the 
coordinates. 

We now consider the action integrals in momentum space for the three potentials we 
considered earlier. 

A. Coulomb potential 

(p2+a2)=2b/ r ,  (96) 

dP P= r d p = 2 b  - I I $+a2' (97) 

For negative, zero and positive energies E = $k2,  the integral can be performed to 
yield (2b/a) tan-'(p/a), -2b/p and (b/k) ln[(p - k)/(p + k)] for the three energy 
domains respectively. In other words, the action integral is identical to the z variable 
introduced in the quantum mechanical problem. 
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B. Linear potential 

P = r dp = -- ( p 2  - k 2 )  dp = --(-- 1 P 3  k'p), J 26 'I 26 3 

C. Shifted Coulomb potential 

Therefore, 
r=2b/(p2+cy2)-P, 

P = r dp = (2b/cy) tan-'(p/a) - p p  (102) J 
Thus in each of the three cases the action integral in momentum space is identical to the 
variable z ,  which arose in the consideration of the quantum mechanical bound-state 
eigenvalue problem in the momentum picture. The eigenvalues in the three cases are 
determined by the conditions 

(103) A :  Lim sin P = 0 or LimP=n.rr, n = 1 , 2 , .  . . , 
P-m P-m 

These quantisation conditions are exact as opposed to the approximate semiclassical 
Jwm-type quantisation conditions which require that the action integral between the 
classical turning points be equal to (n +;)T, n being an integer. 

6. Discussion 

Review papers by Chen and Chen (1972) and Norcliffe (1974) treat representations of 
the Coulomb wavefunctions in momentum space and the correspondence identities 
associated with the Coulomb potentials respectively. The present approach further 
enriches some of the conclusions reached by these authors. Norcliffe's discussion of the 
bound states of the Coulomb potentials points out that from the point of view of 
classical mechanics in momentum space for every physically allowed real value of the 
momentum there is a physically allowed real value of the coordinates, while the 
converse does not hold. It is this difference between the coordinate and momentum 
pictures that indicates why quantum mechanically the bound states are simpler through 
the momentum picture. The simplicity of the representation of the momentum 
eigenfunctions in terms of the action integral in momentum space, and the simplicity of 
the quantisation condition from this point of view, is an interesting aspect that has 
emerged by the present approach. 

The positive-energy Coulomb eigenfunctions in momentum space have been the 
subject of many investigations. The review papers cited above provide long lists of 
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references. Ford (1964) derived a representation of the s-wave Coulomb half-shell 
T-matrix. In terms of the action integral in momentum space for positive energies, 
which has the form z = ( b / k )  ln[(p - k ) / ( p  + k)], Ford's expression indeed bears 
resemblance to a function of the form sin z. The on-shell singularity associated with the 
Coulomb potential manifests itself simply in terms of z, which contains a factor 
ln(p - k). This factor has a logarithmic singularity when p = k. This comparison with 
Ford's expression enables us to identify the function g introduced in equation (13) as 
the half-shell T-matrix. The simplicity of the recursion relation between different 
partial-wave solutions g for bound states points in the direction of a similar simple 
recursion relation between the different positive-energy partial-wave half-shell T- 
matrix elements, because of the similarity in the structure of the solutions in terms of z 
for negative, zero and positive energies. These aspects are currently under investiga- 
tion. 

The s-wave differential equation in momentum space for the br and the - b / ( r + P )  
potentials contain inhomogeneous terms. For the higher partial waves these inhomo- 
geneous terms are not as simple as for the s-wave. The work of Antippa and Phares 
(1978) on representing the higher partial-wave solutions in a central linear potential in 
terms of combinatorial harmonics provides additional incentive towards analysing 
these solutions from the momentum picture. Further work in this direction is in 
progress. 

Appendix 1 

From the Schrodinger equation (equations (26) and (27)) we have 

But the Ricatti-Bessel functions w ( z )  = &(z)  satisfy the differential equation 

d2w/dz2=[1(Z+1)/~2]w-w. 
Therefore, 

(A1.2) 

When equation (27) is used to simplify the first term in square brackets we obtain 

(A1.4) 
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1 d  d ( p 2  + a 2)2 
J = -  - ( p 2 + f f 2 ) - p ( p 2 + a 2 ) X f - I ( I + 1 )  

P dP dP 
XI 

P 2  
d 

rhr2A(pr)  dr-2 r+r;(rA(pr)) dr). 

But from equations (26) and (28) we also have 

i.e. 

(A1.5) 

(A1.6) 

(A1.7) 

(A1.8) 

Therefore 

Thus 

1 d  d 
- -( p 2  + ’) - ( p 2  + a2)x ,  - 1 ( 1  + 1) (” +p 2)2 X I  + 4b2Xr = W, 
P dP dP P 

(Al .  10) 

where W includes the terms within the large parentheses. It remains to be shown that 
W vanishes for bound states. 

Since 

(Al .  12) 

The first term within large parentheses vanishes because of the differential equation 
satisfied by $1, i.e. 

r2d2$,/dr2+2r d$f/dr+[p2r2-1(1+1)-j&?i = O .  (Al .  13) 
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Thus 

Since t..e bound-state wavefunction +I vanishes as r + 0 and r -+ c 
for bound states. 

Appendix 2 

To prove that 

gf = (---cot d a1 ->gfkl (YZ dz b b 

let us first assume that gf-l satisfies equation (31): 

From (A2.1) 

d2 d2 d 
y g f =  - -g1-1 
dz dz2 dz b 

1 2 
ff 2ffz  ffz + 2 7  cosec -cot -gl-l 
b b b  

d d’gl-1 c ~ l  cot (YZ d gf-1 2  CY'^ 2 CYZ dgi-1 + 2 ~ c o s e c  -- =---- 
dz dz2 b b dz2 b b dz 

-2-cosec -cot-gr-1. 
b3 b b  

f f31  2ffz ffz 

Now consider 
2 

d2gi CY 2 ffz I = y + g f  - 1(1+ 1)- cosec -gr. 
dz b2 b 

(A1.14) 

W is identically zero 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.3) 

(A2.4) 

Using (A2.1) again in this equation and re-arranging (A2.4) we obtain 

2a21 2 ffz ffl ffz +- cosec -ggl-l -- cot - 
b2 b b b  

2 
= ( ~ + g t - 1 - l ( l + l ) - c o s e c  ff 2 ffz 

b2 

The terms within large parentheses vanish because of (A2.2); therefore 

I = 0. (A2.6) 

We have proved that if gl-1 satisfies equation (31), then gf defined by (A2.1) must also 
satisfy equation (3 1). Since go satisfies equation (31) with 1 = 0, by recursion gl defined 
by (A2.1) is the solution of equation (31). 



1730 C V Sukumar 

References 

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover) 
Antippa A F and Phares A J 1978 J. Math. Phys. 19 308-19 
Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Ann. Phys. 111 11 1-51 
Bechler A 1977 Ann. Phys. 108 49-68 
Bethe H A and Salpeter E E 1957 Quantum Mechanics of One and Two Electron Systems (Berlin: Springer) 
Chen A C 1978 J.  Math. Phys. 19 1037-40 
Chen J C Y and Chen A C 1972 Adv. Atom. Molec. Phys. 8 71-129 
Cizek J and Paldus J 1978 Int. J. Quant. Chem. 12 875-96 
Dirac P A M 1958 The Principles of Quantum Mechanics (Oxford: University Press) 
Ford W F 1964 Phys. Rev. B 133 1616-21 
Goldstein H 1965 Classical Mechanics (New York: Addison-Wesley) 
Gradshteyn I S and Ryzik 1 M 1965 Tables of Integrals, Series and Products (New York and London: 

Landau L D and Lifshitz E M 1965 Quantum Mechanics (New York: Pergamon) pp 105-6 
Mehta C H and Patil S H 1978 Phys. Rev. A17 43-6 
Morse P M and Feshbach H 1953 Methods of Theoretical Physics vol I1 (New York: McGraw-Hill) 
Norcliffe A 1974 Case Studies in Atomic Physics 4 1-52 

Academic) 


